Abstract
This paper documents the prediction of UH-60A Black Hawk aerodynamic loading using the multisolver Computational Fluid Dynamics/Computational Structural Dynamics analysis framework for rotorcraft Helios for a range of critical steady forward flight conditions. Comparisons with available flight test data are provided for all of the predictions. The Helios framework combines multiple solvers and multiple grid paradigms (unstructured and adaptive Cartesian) such that the advantages of each paradigm is preserved. Further, the software is highly automated for execution and designed in a modular fashion to minimize the burden on both the users and developers. The technical approach presented herein provides details of all of the participant modules and the interfaces used for their integration into the software framework. The results composed of sectional aerodynamic loading and wake visualizations are presented. Solution-based adapative mesh refinement, a salient feature of the Helios framework, is explored for all flight conditions and comparisons are provided for both aerodynamic loading and vortex wake structure with and without adaptive mesh refinement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.