Abstract

The interior permanent-magnet (IPM) synchronous motor is characterized by a high rotor anisotropy. Such an anisotropy is the cause of a high harmonic content of the air-gap flux density distribution, almost independent of the main flux. As a consequence, there are fluctuations of the flux density in the stator iron and, consequently, eddy-current iron losses. This aspect is prominently evident during flux-weakening operations, when the armature current weakens the permanent magnet flux and the motor runs above the base speed. This paper presents a complete study of such a phenomenon, including an analytical model and a finite element validation, as well as an experimental confirmation of the predicted stator tooth flux waveforms. Finally, some suggestions are given in order to design an IPM motor exhibiting reduced iron losses during all operating conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call