Abstract
Abstract The performance of rotor flux oriented induction motor drives, widely used these days, relies on the accurate knowledge of key machine parameters. In most industrial drives, the rotor resistance, subject to temperature variations, is estimated on-line due to its significant influence on the control behaviour. However, the rest of the model parameters are also subject to slow variations, determined mainly by the operating point of the machine, compromising the dynamic performance and the accuracy of the torque estimation. This paper presents an improved rotor-resistance on-line estimation algorithm that contemplates the iron losses of the electrical machine, the iron saturation curve and the mechanical losses. In addition, the control also compensates the rest of the key machine parameters such as the leakage and magnetizing inductances and the iron losses. These parameters are measured by an off-line estimation procedure and stored in look up-tables used by the control. The paper begins by presenting the machine model and the proposed rotor flux oriented control strategy. Subsequently, the off-line parameter measurement procedure is described. Finally, the algorithm is extensively evaluated and validated experimentally on a 15 kW test bench
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of the Polish Academy of Sciences: Technical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.