Abstract
With a 10-kW, 120,000-r/min, ultra-high-speed permanent magnet synchronous motor taken as a prototype, experimental research is conducted on the rotor dynamic behaviours of a three-pad bidirectional gas foil bearing high-speed motor rotor system. Load-carrying properties of the three-pad bidirectional gas foil bearing are analysed, and natural frequencies of conical and parallel whirling modes of the elastically supported rotor are calculated based on an appropriate simplification to the stiffness and damping coefficients of the gas foil bearings. The prototype passes through a 90,000-r/min coast-down experiment. Experiments show that there are violent subsynchronous whirling motions that are evoked by the gas foil bearing–rotor system itself. The cause of shaft orbit drift is analysed, and the corresponding solution is put forward. The theoretical analysis and experimental results can offer a useful reference to the bearing–rotor system design of ultra-high-speed permanent magnet motors and its subsequent dynamic analysis.
Highlights
The generation of propellers and ground power turbines will use oil-free bearings to meet weight and performance requirements.[1]
gas foil bearings (GFBs) have successfully been applied in gas turbines under extreme conditions
The conical mode frequency calculated using the finite element (FE) method is close to the experimental result, and the error is 10.5%
Summary
The generation of propellers and ground power turbines will use oil-free bearings to meet weight and performance requirements.[1].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.