Abstract

In this paper, the relationships between the power augmentation of a HAWT due to Mie-type tip vane application and other factors influencing the efficiency of a wind turbine such as the blade aspect ratio, number of blades, blade pitch angle and Reynolds number are investigated. Experiments were carried out in a wind tunnel with an open, 3.6 m diameter, test section. Rotor models included two- and three-blade upwind turbines with four sets of blades with different aspect ratios. With the rotor blades tested, a maximum power augmentation of about 14.5% was achieved due to Mie vane application. The relationships between power augmentation due to the Mie vane and the above factors are investigated. It is found that the application of a tip-mounted Mie vane results in a larger increase in maximum power coefficient for rotors with smaller aspect ratios and for lower wind speeds. Surface oil film and surface tuft visualization methods were used to detect the flow patterns at the blade tip. Addition of the Mie vanes causes significant changes in flow behavior near the blade tip, resulting in additional blade lift.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.