Abstract

We investigate the ground-state properties and excitations of Rydberg-dressed bosons in both three and two dimensions, using the hypernetted-chain Euler-Lagrange approximation, which accounts for correlations and thus goes beyond the mean field approximation. The short-range behavior of the pair distribution function signals the instability of the homogeneous system towards the formation of droplet crystals at strong couplings and large soft-core radius. This tendency to spatial density modulation coexists with off-diagonal long-range order. The contribution of the correlation energy to the ground-state energy is significant at large coupling strengths and intermediate values of the soft-core radius while for a larger soft-core radius the ground-state energy is dominated by the mean-field (Hartree) energy. We have also performed path integral Monte Carlo simulations to verify the performance of our hypernetted-chain Euler-Lagrange results in three dimensions. In the homogeneous phase, the two approaches are in very good agreement. Moreover, Monte Carlo simulations predict a first-order quantum phase transition from a homogeneous superfluid phase to the quantum droplet phase with face-centered cubic symmetry for Rydberg-dressed bosons in three dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.