Abstract

It has been proposed that rotavirus infection promotes the progression of genetically-predisposed children to type 1 diabetes, a chronic autoimmune disease marked by infiltration of activated lymphocytes into pancreatic islets. Non-obese diabetic (NOD) mice provide a model for the human disease. Infection of adult NOD mice with rhesus monkey rotavirus (RRV) accelerates diabetes onset, without evidence of pancreatic infection. Rather, RRV spreads to the pancreatic and mesenteric lymph nodes where its association with antigen-presenting cells, including dendritic cells, induces cellular maturation. RRV infection increases levels of the class I major histocompatibility complex on B cells and proinflammatory cytokine expression by T cells at these sites. In autoimmunity-resistant mice and human mononuclear cells from blood, rotavirus-exposed plasmacytoid dendritic cells contribute to bystander polyclonal B cell activation through type I interferon expression. Here we tested the hypothesis that rotavirus induces bystander activation of lymphocytes from NOD mice by provoking dendritic cell activation and proinflammatory cytokine secretion. NOD mouse splenocytes were stimulated with rotavirus and assessed for activation by flow cytometry. This stimulation activated antigen-presenting cells and B cells independently of virus strain and replicative ability. Instead, activation depended on virus dose and was prevented by blockade of virus decapsidation, inhibition of endosomal acidification and interference with signaling through Toll-like receptor 7 and the type I interferon receptor. Plasmacytoid dendritic cells were more efficiently activated than conventional dendritic cells by RRV, and contributed to the activation of B and T cells, including islet-autoreactive CD8+ T cells. Thus, a double-stranded RNA virus can induce Toll-like receptor 7 signaling, resulting in lymphocyte activation. Our findings suggest that bystander activation mediated by type I interferon contributes to the lymphocyte activation observed following RRV infection of NOD mice, and may play a role in diabetes acceleration by rotavirus.

Highlights

  • Type 1 diabetes is a chronic autoimmune disease marked by infiltration of immune cells into pancreatic islets and destruction of insulin-secreting b cells [1]

  • Rotavirus stimulation of splenocytes from diabetes-prone Non-obese diabetic (NOD) mice was shown to induce antigen-presenting cells (APCs) and B cell activation, which was prevented by VP7 blockade, inhibition of endosomal acidification and interference with TLR7 or IFNAR signaling

  • These findings provide strong evidence that this lymphocyte activation occurs through type I IFN expression by rhesus monkey rotavirus (RRV)-activated Dendritic cells (DC), mediated by recognition of rotavirus RNA

Read more

Summary

Introduction

Type 1 diabetes is a chronic autoimmune disease marked by infiltration of immune cells into pancreatic islets and destruction of insulin-secreting b cells [1]. Diabetes development is associated with specific high-risk human leukocyte antigen haplotypes [2]. Genetic susceptibility cannot explain the discordance between monozygotic twins, seasonality of disease, rising incidence and trend towards a younger age of onset [3]. Environmental factors such as dietary proteins, intestinal microbiota and virus infections are implicated in diabetes development [4,5]. Rotavirus infection in children genetically at-risk of type 1 diabetes is associated with increased islet autoantibody levels and has been proposed to accelerate progression to diabetes [8,9]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.