Abstract
Rotator graphs, a set of directed permutation graphs, are proposed as an alternative to star and pancake graphs. Rotator graphs are defined in a way similar to the recently proposed Faber-Moore graphs. They have smaller diameter, n-1 in a graph with n factorial vertices, than either the star or pancake graphs or the k-ary n-cubes. A simple optimal routing algorithm is presented for rotator graphs. The n-rotator graphs are defined as a subset of all rotator graphs. The distribution of distances of vertices in the n-rotator graphs is presented, and the average distance between vertices is found. The n-rotator graphs are shown to be optimally fault tolerant and maximally one-step fault diagnosable. The n-rotator graphs are shown to be Hamiltonian, and an algorithm for finding a Hamiltonian circuit in the graphs is given.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Parallel and Distributed Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.