Abstract

Opposition-based learning (OBL) scheme is an effective mechanism to enhance soft computing techniques, but it also has some limitations. To extend the OBL scheme, this paper proposes a novel rotation-based learning (RBL) mechanism, in which a rotation number is achieved by applying a specified rotation angle to the original number along a specific circle in two-dimensional space. By assigning different angles, RBL can search any point in the search space. Therefore, RBL could be more flexible than OBL to find the promising candidate solutions in the complex search spaces. In order to verify its effectiveness, the RBL mechanism is embedded into differential evolution (DE) and the rotation-based differential evolution (RDE) algorithm is introduced. Experimental studies are conducted on a set of widely used benchmark functions. Simulation results demonstrate the effectiveness of RBL mechanism, and the proposed RDE algorithm performs significantly better than, or at least comparable to, several state-of-the-art DE variants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.