Abstract

We have obtained rotationally resolved pulsed field ionization photoelectron (PFI-PE) spectra of O2 in the energy range of 20.2–21.3 eV, covering the ionization transitions of O2+(B 2Σg−, v+=0–7, N+)←O2(X 3Σg−, v″=0, N″). Only the ΔN=−2, 0, and +2 (or O, Q, and S) rotational branches are observed in the PFI-PE bands for O2+(B 2Σg−, v+=0–7), indicating that the outgoing electron continuum channels with angular momenta l=1 and 3 dominate in the ionization transitions. This experiment allows the determination of accurate spectroscopic constants, such as ionization energy (20.29825±0.0005 eV) for the formation of O2+[B 2Σg−, v+=0, N+=1 (F2)] from O2(X 3Σg−, v″=0, N″=1), vibrational constants (ωe+=1152.91 cm−1, ωe+χe+=20.97 cm−1_, and rotational constants (Be+=1.255±0.0015 cm−1, αe+=0.0241±0.00037 cm−1_ for O2+(B 2Σg−, v+). The (nominal) effective lifetimes for high-n Rydberg states converging to O2+(B 2Σg−, v+=0–6) are measured to be ≈0.2–0.6 μs, which are significantly shorter than those of ≈1.9 μs observed for O2+(b 4Σg−, v+=0–5). The shorter (nominal) effective lifetimes for high-n Rydberg states converging to O2+(B 2Σg−, v+=0–6) are attributed to the higher kinetic energy releases (or velocities) of O++O fragments resulting from predissociation of the O2+(B 2Σg−, v+=0–6) ion cores. Rotationally resolved PFI-PE measurements also make possible the identification of the weak vibrational progression with the origin at 20.35 eV as associated with transitions to O2+(2Σu−, v+=0–7). The analysis of the rotationally resolved PFI-PE bands for O2+(2Σu−, v+=0 and 1) has yielded accurate rotational constants and IE values for these states. The rotational structures resolved in the O2+(2Σu−, v+=0 and 1) PFI-PE bands are contributed overwhelmingly by the ΔN=−3, −1, +1, and +3 (or N, P, R, and T) rotational branches, showing that the angular momenta for the outgoing photoelectron are restricted to l=0, 2, and 4. Based on simulation of the observed rotational structures, we also obtain the predissociative lifetimes for O2+(B 2Σg−, v+=0–7) and O2+(2Σu−, v+=0–1) to be in the range of 0.45–2 ps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.