Abstract

Universality of local unitary transformations is one of the cornerstones of quantum computing with many applications and implications that go beyond this field. However, it has recently been shown that this universality does not hold in the presence of continuous symmetries: generic symmetric unitaries on a composite system cannot be implemented, even approximately, using local symmetric unitaries on the subsystems. In this Letter, we show that, despite these constraints, any SU(2) rotationally invariant unitary can be realized with the Heisenberg exchange interaction, which is 2-local and rotationally invariant, provided that the system interacts with a pair of ancilla qubits. We also show that a single ancilla is not enough to achieve universality. Furthermore, we study qubit circuits formed from k-local rotationally invariant unitaries and fully characterize the constraints imposed by locality on the realizable unitaries. We also find an interpretation of these constraints in terms of the average energy of states with a fixed angular momentum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call