Abstract

We present an experimental and theoretical investigation of rotationally inelastic transitions of OH, prepared in the X(2)Π, v = 0, j = 3/2 F1f level, in collisions with molecular hydrogen (H2 and D2). In a crossed beam experiment, the OH radicals were state selected and velocity tuned over the collision energy range 75-155 cm(-1) using a Stark decelerator. Relative parity-resolved state-to-state integral cross sections were determined for collisions with normal and para converted H2. These cross sections, as well as previous OH-H2 measurements at 595 cm(-1) collision energy by Schreel and ter Meulen [J. Chem. Phys. 105, 4522 (1996)], and OH-D2 measurements for collision energies 100-500 cm(-1) by Kirste et al. [Phys. Rev. A 82, 042717 (2010)], were compared with the results of quantum scattering calculations using recently determined ab initio potential energy surfaces [Ma et al., J. Chem. Phys. 141, 174309 (2014)]. Good agreement between the experimental and computed relative cross sections was found, although some structure seen in the OH(j = 3/2 F1f → j = 5/2 F1e) + H2(j = 0) cross section is not understood.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.