Abstract

Bioassays are indispensable tools in areas ranging from fundamental life science research to clinical practice. Improving assay speed and levels of detection will have a profound impact in all of these areas. We recently developed a rapid, sensitive format for immunosorbent assays that expedites antigen mass transport by rotating the capture substrate. This review outlines the theoretical foundation of rotationally induced hydrodynamics and its application in heterogeneous assays. We describe a general solution that solves the rates of immunoreactions on rotating capture substrates, taking into account both diffusion and the rate of reaction between antibody and antigen. The general solution applies to a wide range of rotation rates, including mass transport-limited to reaction rate-limited assays, and is validated experimentally. We discuss several applications that demonstrate how immunoassays can be tailored to increase speed as well as lower the limit of detection of viral particles, pathogens, toxins, and proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.