Abstract

AbstractThe three-dimensional crystal structure of rotationally disordered illite/smectite (I/S) in K-bentonite samples from the Appalachian basin and neighboring areas is described using the parameters of 1) P0, the proportion of zero-degree layer stacking rotations, such as in the polytype series 1Md-1M; 2) Pcv, the proportion of 2:1 layers with cis-vacant (cv) octahedral sites that are randomly interstratified with trans-vacant (tv) layers; and 3) P60 the proportion of layers with n·60° rotations (as opposed to n·120°) in the rotated layers. These parameters were determined by computer modeling of experimental randomly oriented powder X-ray diffraction patterns.The proportion of cv interstratification in the I/S increases with A1 and decreases with Mg and Fe content. The proportion of n·60° rotations in the rotated layers increases with Mg and Fe content. The cv 120° disordered structure correlates with tetrahedral A1 for Si substitution and increasing tetrahedral charge. The tv n·60° disordered structures correlate with octahedral Mg for A1 substitution. The data indicate that the type of unit cell and nature of rotational disorder in I/S is controlled by the octahedral Mg content. The three-dimensional structures do not show any systematic correlation with Reichweite and percent expandability as determined from diffraction patterns of oriented sample preparations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.