Abstract

Polymer-based composites with high BN sheets loadings have potential to improve thermal conductivity without compromising mechanical performance. In this work, a balanced enhancement in both thermal conductivity and tensile strength were achieved using rotational shear followed by axial hot compression. For neat HDPE matrix, the highly oriented shish-kebab structures induced by shear field improved tensile strength from 20.4 MPa to 80.9 MPa, compared with unsheared specimens. The in-plane thermal conductivity of sheared HDPE/BN composite was 25.0% higher than the unsheared one. Axial hot compression resulted in denser crystal and oriented fillers, leading to a 63% increase in tensile strength while simultaneously increasing thermal conductivity in both in-plane and out-plane directions. This work has utilized rotation shear and axial hot compression to manufacture HDPE/BN composites with effective two-way thermal conductivity and higher tensile strength. The excellent thermo-mechanical properties mean a longer service time and less replaced frequency of material under extreme operating conditions. The two-step methods provide a key information for the preparation of composites with balanced mechanical properties and thermal conductivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.