Abstract

Traditionally, bridges were solved with steel trusses designed under certain assumptions such as the members being loaded only with axial forces. This assumption is only true if the connections allow the rotation between elements, which in reality is not the case. There are always certain forces transmitted depending on the stiffness of the connection. The following work is intended to determine the rotational stiffness in the connections of a historical steel railway bridge. Different configurations of connections are modeled using component based finite element method (CBFEM) to obtain the real value of the stiffness in the joints. As a result of this analysis, a linear correlation between the value of the rotational stiffness and the number of rivets in the connections is observed. Similarly, there is a linear correlation with the stiffness of the element that is connected in the joint. These results can help to provide an estimate of the rotational stiffness to be considered in a more realistic approach for the assessment of historical railway bridges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call