Abstract

Methoxyamine is a potential interstellar amine that has been predicted by gas-grain chemical models for the formation of complex molecules. The aim of this work is to provide direct experimental frequencies of its ground-vibrational state in the millimeter- and submillimeter-wave regions to achieve its detection in the interstellar medium. Methoxyamine was chemically liberated from its hydrochloride salt, and its rotational spectrum was recorded at room temperature from 75 to 480 GHz using the millimeter-wave spectrometer in Valladolid. Many observed transitions revealed A-E splitting caused by the internal rotation of the methyl group, which had to be treated with specific internal rotation codes. Over 400 lines were newly assigned for the most stable conformer of methoxyamine, and a precise set of spectroscopic constants was obtained. Spectral features of methoxyamine were then searched for in the Orion KL, Sgr B2, B1-b, and TMC-1 molecular clouds. Upper limits to the column density of methoxyamine were derived.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call