Abstract

Terahertz absorption spectroscopy was employed to extend the measurements on the pure rotational transitions of N2H+, N2D+ and their 15N-containing isotopologues in the ground state and first excited vibrational states for the three fundamental vibrational modes. In total, 91 new pure rotational transitions were observed in the range of 0.7–2.7THz. The observed transition frequencies were fit to experimental accuracy, and the improved molecular parameters were obtained. The new measurements and predictions reported here will support the analysis of high-resolution astronomical observations made with facilities such as SOFIA and ALMA where laboratory rest frequencies with uncertainties of 1MHz or smaller are required for proper analysis of velocity resolved astrophysical components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.