Abstract

Acetone (CH3COCH3), the simplest ketone, has recently attracted considerable attention for its important role in atmospheric chemistry and in the formation of ices in extraterrestrial sources that contain complex organic molecules. In this study, we employed a combination of experimental rotational spectroscopy and quantum chemistry calculations to investigate the structure and dynamics of the acetone-water complex. Our aim was to understand how non-covalent interactions with water affect the methyl internal rotation dynamics of acetone, and how water-centered large amplitude motions alter the observed physical properties compared to those predicted at the equilibrium position. Detailed rotation-tunneling analyses of acetone-H2O and -D2O reveal that the interactions with water disrupt the equivalence of the two methyl rotors, resulting in a noticeably lower methyl rotor barrier for the top with the close-by water compared to that of free acetone. The barrier for the methyl group further from water is also lower, although to a lesser degree. To gain further insights, extensive theoretical modelling was conducted, focusing on the associated large amplitude motions. Furthermore, quantum theory of atoms in molecules and non-covalent interactions analyses were utilized to visualize the underlying causes of the observed trends.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.