Abstract
According to old theories of sweetness, the perception of sweet substances is closely linked to the arrangement of atoms within them. To assess the validity of these theories, we conducted an analysis of the structure of the artificial sweetener dulcin for the first time, utilizing microwave spectroscopy and a laser ablation source. These techniques have enabled the identification of two conformers, which are stabilized by an intramolecular hydrogen bond between the amino group and the phenyl ring. The observed conformations were examined in light of the Shallenberger-Acree-Kier molecular theory of sweet taste, and they align with the hypothesized criteria. Furthermore, the study illustrates how conformational relaxation can alter the equilibrium conformational distribution, resulting in the absence of certain conformers in the conformational landscape.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.