Abstract

Cyanoacetylene enriched in deuterium was used to record pure rotational transitions of DC 3N and its rare 13C and 15N isotopic species by employing Fourier transform microwave (FTMW) spectroscopy on a supersonic-jet expansion at centimeter wavelengths (8.2–25.4 GHz) and by using long-path absorption spectroscopy at millimeter and submillimeter wavelengths (82–900 GHz). In addition, submillimeter wave measurements (304–897 GHz) have been performed for DC 3N in its v 7 = 1 lowest excited vibrational state. Hyperfine structure caused by the 14N and D nuclei has been resolved in the FTMW spectra. Quantum-chemical calculations have been performed on the hyperfine structure parameters at the coupled-cluster level (CCSD(T)) with up to core-polarized quintuple zeta basis-sets and were found to be in excellent agreement with experimental data as far as these were available. Vibrational corrections on the quadrupole coupling parameters have been evaluated at the MP2 level employing a quadruple zeta basis-set. The present and previous data were fit simultaneously to obtain accurate predictions for the identification of these species in space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.