Abstract
The rotational embedded submanifold of $\mathbb{E}^{n+d}$ first studied by N. Kuiper. The special examples of this type are generalized Beltrami submanifolds and toroidals submanifold. The second named authour and at. all recently have considered $3-$dimensional rotational embedded submanifolds in $\mathbb{E}^{5}$. They gave some basic curvature properties of this type of submaifolds. Self-similar flows emerge as a special solution to the mean curvature flow that preserves the shape of the evolving submanifold. In this article we consider self-similar submanifolds in Euclidean spaces. We obtained some results related with self-shrinking rotational submanifolds in Euclidean $5-$space $\mathbb{E}^{5}$. Moreover, we give the necessary and sufficient conditions for these type of submanifolds to be homothetic solitons for their mean curvature flows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.