Abstract

BackgroundA basic tenet of protein science is that all information about the spatial structure of proteins is present in their sequences. Nonetheless, many proteins fail to attain native structure upon experimental denaturation and refolding in vitro, raising the question of the specific role of cellular machinery in protein folding in vivo. Recently, we hypothesized that energy-dependent twisting of the protein backbone is an unappreciated essential factor guiding the protein folding process in vivo. Torque force may be applied by the ribosome co-translationally, and when accompanied by simultaneous restriction of the rotational mobility of the distal part of the growing chain, the resulting tension in the protein backbone would facilitate the formation of local secondary structure and direct the folding process.ResultsOur model of the early stages of protein folding in vivo postulates that the free motion of both terminal regions of the protein during its synthesis and maturation is restricted. The long-known but unexplained phenomenon of statistical overrepresentation of protein termini on the surfaces of the protein structures may be an indication of the backbone twist-based folding mechanism; sustained maintenance of a twist requires that both ends of the protein chain are anchored in space, and if the ends are released only after the majority of folding is complete, they are much more likely to remain on the surface of the molecule. We identified the molecular components that are likely to play a role in the twisting of the nascent protein chain and in the anchoring of its N-terminus. The twist may be induced at the C-terminus of the nascent polypeptide by the peptidyltransferase center of the ribosome. Several ribosome-associated proteins, including the trigger factor in bacteria and the nascent polypeptide-associated complex in archaea and eukaryotes, may restrict the rotational mobility of the N-proximal regions of the peptides.ConclusionsMany experimental observations are consistent with the hypothesis of co-translational twisting of the protein backbone. Several molecular players in this hypothetical mechanism of protein folding can be suggested. In addition, the new view of protein folding in vivo opens the possibility of novel potential drug targets to combat human protein folding diseases.ReviewersThis article was reviewed by Lakshminarayan Iyer and István Simon.

Highlights

  • A basic tenet of protein science is that all information about the spatial structure of proteins is present in their sequences

  • We discuss the evidence that the peptidyltransferase center of the ribosome constrains the C-terminus of the nascent peptide and may confer a twist to the nascent chain

  • In order for such a twist to persist in time and space, it is essential that a distal portion of the nascent peptide is itself topologically constrained, and we argue that application of such a constraint may be the common function of a cascade of factors associated with the ribosome, the nascent peptide and the freshly synthesized protein

Read more

Summary

Introduction

A basic tenet of protein science is that all information about the spatial structure of proteins is present in their sequences. Many proteins fail to attain native structure upon experimental denaturation and refolding in vitro, raising the question of the specific role of cellular machinery in protein folding in vivo. The in vivo activities of intracellular molecular machines, such as ribosomes, chaperones, protein processing and quality-control systems, are thought to modulate these essential mechanisms, but the physical theory of those additional contributions is insufficiently developed and is not seen as key to understanding how proteins fold. Several decades of theory, simulations, and laboratory work, based on the principle of sufficiency of sequence information for uncovering the protein folding pathways, have neither given us efficient algorithms for de novo folding of proteins, nor have provided much help to the practical efforts of protein purification and refolding

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.