Abstract
Understanding the nature of charge carriers in doped Mott insulators holds the key to unravelling puzzling properties of strongly correlated electron systems, including cuprate superconductors. Several theoretical models suggested that dopants can be understood as bound states of partons, the analogues of quarks in high-energy physics. However, direct signatures of spinon-chargon bound states are lacking, both in experiment and theory. Here we propose a rotational variant of angle-resolved photo-emission spectroscopy (ARPES) and calculate rotational spectra numerically using the density-matrix renormalization group. We identify long-lived rotational resonances for an individual dopant, which we interpret as a direct indicator of the microscopic structure of spinon-chargon bound states. Similar to Regge trajectories reflecting the quark structure of mesons, we establish a linear dependence of the rotational energy on the superexchange coupling. The rotational peaks we find are strongly suppressed in standard ARPES spectra, but we suggest a multiphoton extension of ARPES which allows us to access rotational spectra. Our findings suggest that multiphoton spectroscopy experiments should provide new insights into emergent universal features of strongly correlated electron systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.