Abstract

Abstract The deuterated hydrogen molecule HD has been observed in a variety of cool molecular astrophysical environments. By virtue of its small dipole moment the HD molecule is believed to have played an important role in the cooling of the primordial gas in the formation of the first stars and galaxies. HD has also recently been proposed as a tracer of molecular hydrogen in protoplanetary disk evolution, providing a diagnostic for the total disk mass. Here we report benchmark computations of rotational quenching rate coefficients for HD in collisions with H2 based on quantum coupled channel methods within the rigid rotor model, and validate them against full-dimensional rovibrational scattering formalism. It is found that the rigid rotor model yields accurate rate coeffiicents for rotational transitions in HD+H2 collisions at astrophysically relevant kinetic temperatures. Results are reported using the most recent highly accurate interaction potentials for the H2–H2 system. We obtain excellent agreement with previous results of Schaefer for the most important Δj = ±1, ±2 transitions in HD induced by ortho- and para-H2, but find significant differences with recent results of Sultanov et al. that employed the same interaction potential as the one adopted here.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.