Abstract

First order rotational perturbations of the Friedmann–Robertson–Walker metric are considered in the framework of the brane-world cosmological models. A rotation equation, relating the perturbations of the metric tensor to the angular velocity of the matter on the brane is derived under the assumption of slow rotation. The mathematical structure of the rotation equation imposes strong restrictions on the temporal and spatial dependence of the brane matter angular velocity. The study of the integrable cases of the rotation equation leads to three distinct models, which are considered in detail. As a general result we find that, similarly to the general relativistic case, the rotational perturbations decay due to the expansion of the matter on the brane. One of the obtained consistency conditions leads to a particular, purely inflationary brane-world cosmological model, with the cosmological fluid obeying a non-linear barotropic equation of state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.