Abstract

Various nonlinear energy harvesters that harvest energy from rotational motion have been investigated, but their performance at low frequencies is always deficiency. To realize the efficient harvesting of low frequency rotational motion energy, rotational nonlinear energy harvesting via an orthogonally arranged dual-beam is proposed for the first time. Based on the energy method, the electromechanical coupling equation of orthogonally arranged dual-beam in rotating motion is derived in detail. The harmonic balance method together with arc length continuation is employed to approximate the frequency response functions of the output power. To deeply explore the nonlinear dynamic behavior of the system, numerical analysis is conducted to obtain the output voltage and phase diagram in the time domain. Finally, the theoretical analysis results are verified through experiments. The results demonstrate that the vertical arrangement of nonlinear dual-beam in rotational motion effectively improved the energy harvesting efficiency at low frequencies, with excellent energy harvesting performance. This study provides an effective technical approach to energy harvesting for low frequency rotating systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.