Abstract

What is the origin of rotational motion? An answer is presented through the study of the dynamics for spatially localized spots near codimension 2 singularity consisting of drift and peanut instabilities. The drift instability causes a head-tail asymmetry in spot shape, and the peanut one implies a deformation from circular to peanut shape. Rotational motion of spots can be produced by combining these instabilities in a class of three-component reaction-diffusion systems. Partial differential equations dynamics can be reduced to a finite-dimensional one by projecting it to slow modes. Such a reduction clarifies the bifurcational origin of rotational motion of traveling spots in two dimensions in close analogy to the normal form of 1:2 mode interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.