Abstract
Spherical video is becoming prevalent in virtual and augmented reality applications. With the increased field of view, spherical video needs enormous amounts of data, obviously demanding efficient compression. Existing approaches simply project the spherical content onto a plane to facilitate the use of standard video coders. Earlier work at UCSB was motivated by the realization that existing approaches are suboptimal due to warping introduced by the projection, yielding complex non-linear motion that is not captured by the simple translational motion model employed in standard coders. Moreover, motion vectors in the projected domain do not offer a physically meaningful model. The proposed remedy was to capture the motion directly on the sphere with a rotational motion model, in terms of sphere rotations along geodesics. The rotational motion model preserves the shape and size of objects on the sphere. This paper implements and tests the main ideas from the previous work [1] in the context of a full-fledged, unconstrained coder including, in particular, bi-prediction, multiple reference frames and motion vector refinement. Experimental results provide evidence for considerable gains over HEVC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.