Abstract
The design and operation of a new mass transport technique is presented. Rotational hydrodynamic diffusion system (RHDS) is a method that can be adapted for analytical laboratory analysis as well as industrial-scale separation and purification. Although RHDS is not an electrochemical technique, its concept is derived from hydrodynamic rotating disk electrode voltammetry. A diffusion advantage gained using the RHDS is higher flux of probe molecules across the boundary (e.g., membrane or porous media) with increased rotation rate compared to the static two-half-cell (THC) method. The separation concept of RHDS differs from pressurized, agitated, electrodialysis, and reversed osmosis systems in design and theory. The detection mechanism of the RHDS opens the possibility to study mass transport properties of a large variety of molecules using different types of ultrathin membranes. Therefore, the RHDS is a potential alternative to classical mass transport detection methods such as THC, impedance spectroscopy, and cyclic and rotating disk electrode voltammetry. Theoretical analysis on the rotational hydrodynamic flux is derived and compared to experimental flux measured using HCl, KCl, KNO 3, Ni(NO 3) 2, LiCl, camphor sulfonic acid, and K 3Fe(CN) 6 ionic solutions. Values of effective diffusion coefficients of salts across Nucleopore membranes of thickness 6.0 and 10 mum with pore size 0.1 and 0.2 mum, respectively, are presented and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.