Abstract

We report on ab initio coupled-cluster calculations of the interaction potential energy surface for the HCNH+–He complex. The aug-cc-pVTZ Gaussian basis, to which is added a set of bond functions placed at mid-distance between HCNH+ center of mass and He atom is used. The HCNH+ bonds length are set to their values at the equilibrium geometry, i.e., r e [HC]=1.0780 A, r e [CN]=1.1339 A and r e [NH]=1.0126 A. The interaction energy presents a global minimum located $266.9~\mathrm{cm^{-1}}$ below the HCNH+–He dissociation limit. Using the interaction potential obtained, we have computed rotational excitation cross sections in the close-coupling approach and downward rate coefficients at low temperature (T≤120 K). It is expected that the data worked out in this study may be beneficial for further astrophysical investigations as well as laboratory experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.