Abstract
Data for the small-angle scattering of protons from several polar and nonpolar molecules in the energy range 10 to 30 eV indicate that the presence of a dipole moment in the neutral molecule greatly enhances the rotational excitation process in ion-molecule collisions. Within our experimental energy resolution, no rotational excitation was observable for proton collisions with H2, HD, D2, or N2. There is, however, some evidence for a small amount of rotational excitation of the dipolar molecule CO, and for HCl and HF large amounts of rotational excitation were observed. The inelasticity was found to be greater for HF than for HCl, consistent with the relative dipole moments and moments of inertia of the two molecules. The average excitation energies for HF measured at fixed scattering angle are qualitatively in agreement with a classical perturbation calculation for pure rotational excitation. For HCl, the classical perturbation calculation gives a rotational excitation energy much lower than the average observed translational energy loss, indicating that concurrent vibrational excitation, though not resolved in the presence of rotational excitation, may be relatively more important for HCl than for HF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.