Abstract

The behavior of Λ-doublet resolved rotational energy transfer (RET) by Ar collisions within the SH(X(2)Π, v''=0) state is characterized. The matrix elements of terms in the interaction potential responsible for interference effects are calculated to explain the propensity rules for collision-induced transitions within and between spin-orbit manifolds. In this manner, the physical mechanisms responsible for the F(1)-F(1), F(2)-F(2), and F(1)-F(2) transitions may be reasonably identified. As collision energy increases, the propensity for collisional population of the final e or f level is replaced by the e/f-conserving propensity. Such a change in propensity rule can be predicted in terms of energy sudden approximation at high J limit for the pure Hund's case scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.