Abstract

The optical binding of many particles has the potential to achieve the wide-area formation of a "crystal" of small materials. Unlike conventional optical binding, where the entire assembly of targeted particles is directly irradiated with light, if remote particles can be indirectly manipulated using a single trapped particle through optical binding, the degrees of freedom to create ordered structures can be enhanced. In this study, we theoretically investigate the dynamics of the assembly of gold nanoparticles that are manipulated using a single trapped particle by a focused laser. We demonstrate the rotational motion of particles through an indirect optical force and analyze it in terms of spin-orbit coupling and the angular momentum generation of light. The rotational direction of bound particles can be switched by the numerical aperture. These results pave the way for creating and manipulating ordered structures with a wide area and controlling local properties using scanning laser beams.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call