Abstract
We report a polarized fluorescence recovery after photobleaching (pFRAP) method to measure the rotational dynamics of fluorescent colloids over a wide dynamic range. The method is based on the polarization anisotropy in the fluorescence intensity, generated by bleaching of fluorescently labeled particles with an intense pulse of linearly polarized laser light. The rotational mobilities of the fluorescent particles can be extracted from the relaxation kinetics of the postbleach fluorescence polarization anisotropy. Our pFRAP setup has access to correlation times over a range of time scales from tens of microseconds to tens of seconds, and is highly sensitive, so very low concentrations of labeled particles can be probed. We present a detailed description of the theoretical background of pFRAP. The performance of the equipment is demonstrated for fluorescent colloidal silica spheres, dispersed in pure solvents as well as in fd-virus suspensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.