Abstract

The rotational diffusion of actin was studied with the technique of time-resolved phosphorescence anisotropy using actin labeled at Cys-374 with erythrosin iodoacetamide. Immediately after the polymerization of actin was initiated, the correlation time increased sharply, passing through a maximum at 5 min and then declined to low values. F-Actin at equilibrium showed no anisotropy decay. The results were interpreted as indicating the initial formation of short mobile filaments which became increasingly immobile as elongation proceeded, leaving a decay which was dominated by shorter filaments. Some of these short filaments could have arisen by fragmentation of longer filaments. Eventually, the shorter filaments themselves became immobilized by entanglement within the gel matrix. The infinite-time anisotropy increased during polymerization, reflecting a smaller range of angular motion of the probe brought about by restricted torsional motion on the submicrosecond time scale. The results were compared with the length distribution of actin filaments revealed by electron microscopy [Kawamura, M., & Maruyama, K. (1970) J. Biochem. (Tokyo) 67, 437-457]. Polymerization in the presence of 1 microM cytochalasin B abolished the maximum in the correlation time profile and tended to prevent the immobilization of filaments by favoring shorter capped filaments which retained considerable rotational freedom. Addition of spectrin dimer to F-actin caused an increase in the time-invariant anisotropy. Subsequent additions of spectrin-binding proteins (erythrocyte bands 2.1 and 4.1) caused further increases in the anisotropy in a concentration-dependent manner, suggesting additional restriction of submicrosecond torsional motions. The results suggest that actin filaments within nonmuscle cells are rotationally immobile particularly if they are cross-linked by actin-binding proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call