Abstract

Abstract. Sea ice extent variability, a measure based on satellite-derived sea ice concentration measurements, has traditionally been used as an indicator to evaluate the impact of climate change on polar regions. However, concentration-based measurements of ice variability do not allow the discrimination of the relative contributions made by thermodynamic and dynamic processes, prompting the need to use sea ice drift products and develop methods to quantify changes in sea ice dynamics that would indicate trends in the ice characteristics. Here, we present a new method to automate the detection of rotational drift features in Antarctic sea ice from space at spatial and temporal scales comparable to that of polar weather. This analysis focusses on drift features in the Atlantic sector of the Southern Ocean in the period 2013–2020 using currently available satellite ice motion products from EUMETSAT OSI SAF. We observe a large discrepancy between cyclonic and anticyclonic drift features, with cyclonic features typically exhibiting larger drift intensity and spatial variability according to all products. The mean intensity of the 95th percentile of cyclonic features is 1.5–2.0 times larger for cyclonic features than anticyclonic features. The spatial variability of cyclonic features increased with intensity, indicating that the most intense cyclonic features are also the least homogenous. There is good agreement between products in detecting anticyclonic features; however, larger disagreement is evident for cyclonic features, with the merged product showing the most intense 95th percentile threshold and largest spatial variability, likely due to the more extended coverage of valid vorticity points. A time series analysis of the 95th percentile shows an abrupt intensification of cyclonic features from 2014–2017, which coincides with the record decline in Antarctic sea ice extent since winter of 2015. Our results indicate the need for systematic assessments of sea ice drift products against dedicated observational experiments in the weather-dominated Atlantic sector. Such information will allow us to confirm whether the detected increase in cyclonic vorticity is linked to rapidly changing atmospheric changes driven by sea ice dynamics and establish the measure of rotational sea ice drift as a potential indicator of weather-driven variability in Antarctic sea ice.

Highlights

  • The Antarctic continent is surrounded by seasonally varying sea ice

  • This study proposes a method for the detection and quantification of rotational drift features in Antarctic sea ice at temporal and spatial scales similar to that of local weather events

  • This analysis presents a new method to automatically detect and quantify rotational drift in Antarctic sea ice using the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF) low-resolution 48 h sea ice drift product range. This methodological process is the first attempt to quantify synoptic-scale vorticity features in sea ice using remote sensing techniques, with the aim to establish an indicator of rotational drift in the sea ice field by which to detect current and future changes in the ice dynamics

Read more

Summary

Introduction

The Antarctic continent is surrounded by seasonally varying sea ice. During the austral winter, sea ice coverage expands zonally when progressing northward into the Southern Ocean and constricts south towards Antarctica’s coastline in the austral summer. Sea ice plays a major role in ocean and atmosphere interactions, primarily acting as a heat, mass, and momentum exchange modulator between the surface water and overlying air masses (McPhee et al, 1987; Vihma et al, 2014). Sea ice coverage is a key component of the Southern Ocean climate system and the global climate system (Mayewski et al, 2009). Antarctic sea ice is characterized by high temporal and spatial variability, which has shown an increase in the recent years, as well as a major abrupt reduction in the circumpolar ice cover (Parkinson, 2019; Turner et al, 2017).

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call