Abstract

Metasurfaces are artificial structures that can arbitrarily manipulate electromagnetic (EM) wavefronts. We propose a nonreciprocal EM isolating surface based on space-time-coding metasurfaces that generates orbital angular momentum (OAM)-carrying beams with electronic rotational Doppler effect. The region between two parallel 1-bit programmable space-time-coding OAM metasurfaces, one each for frequency and OAM order up-conversion and down-conversion, induce rotational Doppler shifts from opposing incident directions. An intermediate frequency-selective surface with highpass characteristics transmits the up-conversion signals and blocks the down-conversion signals. Hence, the EM waves are sensitive to illumination direction, exhibiting EM isolation responses, and the incident waves are only transmitted unidirectionally.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.