Abstract

Self-assembled molecular machines have great potential to enable noncovalent regulation of a coupled motion of the building blocks. Herein we report the synthesis and the rotational control of a lantern-type dirhodium complex with circularly arranged four 2,3,6,7,14,15-hexamethyltriptycene carboxylates as gears and two axial ligands as the rate control elements. The rotating rates in solution were markedly affected by the coordination ability and the bulkiness of axial ligands. Notably, the rate changes were closely correlated with the changes in the electronic states of the dirhodium center. Such ligand exchange-based control of rotational motions with color changes would advance stimulus-responsive metallo-molecular multirotors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.