Abstract

Differential cross-sections of the 11B + α inelastic scattering at E(α) = 65 leading to the most of the known 11B states at the excitation energies up to 14 MeV were measured. The data analysis was done by DWBA and in some cases by the modified diffraction model allowing determining the radii of the excited states. The radii of the states with excitation energies less than ∼ 7 MeV with the accuracy not less than 0.1-0.15 fm coincide with the radius of the ground state. This result is consistent with the traditional view of the shell structure of the low-lying states in 11B. Most of the observed high-energy excited states are distributed among four rotational bands. The moments of inertia of band states are close to the moment of inertia of the Hoyle state of 12C. The calculated radii, related to these bands, are 0.7 - 1.0 fm larger than the radius of the ground state, and are close to the radius of the Hoyle state. These results are in agreement with existing predictions about various cluster structure of 11B at high excitation energies. The state with the excitation energy 12.56 MeV, Iπ = 1/2+, T = 1/2 and the root mean square radius R ∼ 6 fm predicted in the frame of the alpha condensate hypothesis was not found.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.