Abstract

Rotational bands are commonplace in the spectra of atomic nuclei. Inspired by early descriptions of these bands by quadrupole deformations of a liquid drop, Elliott constructed discrete nucleon representations of SU(3) from fermionic creation and annihilation operators. Ever since, Elliott’s model has been foundational to descriptions of rotation in nuclei. Later work, however, suggested the symplectic extension Sp(3, R) provides a more unified picture. We decompose no-core shell-model nuclear wave functions into symmetry-defined subspaces for several beryllium isotopes, as well as 20Ne, using the quadratic Casimirs of both Elliott’s SU(3) and Sp(3, R). The band structure, delineated by strong B(E2) values, has a more consistent description in Sp(3, R) rather than SU(3). In particular, we confirm previous work finding in some nuclides strongly connected upper and lower bands with the same underlying symplectic structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.