Abstract
The rotational angular momentum (spin) dependence of the binary scattering amplitude operator is investigated for elastic collisions of homonuclear diatomic molecules with monatomic and diatomic particles. Starting point is a formal expansion of the T-matrix (and consequently of the scattering amplitude) with respect to the nonsphericity parameter ε which essentially measures the ratio of the nonspherical and spherical parts of the interaction potential. A transscription of angle dependent potential functions into a spin operator notation is introduced. Potential functions and values for ε may be inferred from the data available in the literature for the interactions: H2—He (ε ≈ 1/4) and H2—H2 (ε ≈ 1/20). As far as elastic events are concerned, irreducible spin tensors of even rank only occur with the interaction potential and consequently with the scattering amplitude in order ε. The most important terms of the scattering amplitude of diatomic molecules are quadratic in the spins. These terms are discussed in detail. In order ε2 the scattering amplitude also contains irreducible spin tensors of odd rank. A knowledge of the orders of magnitude of the various spin — dependent terms is of interest for the SENFTLEBEN-BEENAKKER effect and for NMR in polyatomic gases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.