Abstract

Two low-energy excitations of a single water molecule are observed via inelastic electron tunneling spectroscopy, where a significant enhancement is achieved by attaching the molecule to the tip apex in a scanning tunneling microscope. Density functional theory simulations and quantum mechanical calculations of an asymmetric top are carried out to reveal the origin of both excitations. Variations in tunneling junction separation give rise to the quantum confinement effect on the quantum state of a water molecule in the tunneling junction. Our results demonstrate a potential method for measuring the dynamic behavior of a single molecule confined in a tunneling junction, where the molecule-substrate interaction can be purposely tuned.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.