Abstract

Rotational and translational movements of 1-oxyl-2,2,6,6-tetramethyl-4-oxypiperidine (TEMPOL) spin probe in the room temperature ionic liquid (RTIL) 1-octyl-3-methylimidazolium tetrafluoroborate (omimBF4) and in two molecular solvents, 1-propanol and isopropyl benzene (cumene), have been studied by X-band electron paramagnetic resonance (EPR) spectroscopy. Rotational correlation times τ c of spin probes and the intermolecular spin exchange rate constants k e were measured from EPR spectra at different temperatures and TEMPOL concentrations, and compared with the published data. The τ c values were calculated both by known equations and from the EPR spectra simulation. Rotation movements of TEMPOL in omimBF4 cannot be described by the model of the isotropic Brownian diffusion, which is valid for conventional solvents. The correct modeling of EPR spectra in RTIL can be achieved with the assumption of different rotational mobility of the spin probe around different molecular axes. The rotational, D rot, and translational, D tr, diffusion coefficients were calculated from τ c and k e values. The Debye–Stokes–Einstein law is valid in all three solvents while the dependence of D tr on T/η is not linear in Stokes–Einstein coordinates. The effective activation energy E rot a of the rotational movements in omimBF4 is noticeably higher than the corresponding values for conventional solvents, while the effective activation energies E tr a of the translational movements are comparable in all solvents studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.