Abstract

Abstract We use a cranked shell model Monte Carlo (SMMC) approach to study rotational properties and pair correlationsin the odd-odd N = Z nucleus 74Rb. The calculation is performed in the complete 1p-0ƒ 5 2 -0g 9 2 model space with a residual interaction derived from the Paris potential. The calculated ground state is dominated by isovector J = 0 proton-neutron (pn) pairing. With increasing frequency the J = 0 pn correlations decrease to a constant value at around 〈J〉 = 3 ± 1.5 h while the isoscalar pn correlations (mainly J = 9) increase. Relatedly, the isospin decreases with frequency from its ground state value T = 1 as isoscalar correlations set in. This finding is in agreement with experiement, where at higher rotational frequency a T = 0 band becomes energetically favored over the T = 1 ground state band.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.