Abstract
It is conjectured by Berge and Fulkerson that every bridgeless cubic graph has six perfect matchings such that each edge is contained in exactly two of them. An infinite family R, of cyclically 5-edge-connected rotation snarks, was discovered in [European J. Combin. 2021] by Máčajová and Škoviera. In this paper, the Berge-Fulkerson conjecture is verified for the family R, and furthermore, a sup-family of R. Catlin’s contractible configuration and Tutte’s integer flow are applied here as the key methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.