Abstract
The ideal of Bessel-Fourier moments (BFMs) for image analysis and only rotation invariant image cognition has been proposed recently. In this paper, we extend the previous work and propose a new method for rotation, scaling and translation (RST) invariant texture recognition using Bessel-Fourier moments. Compared with the others moments based methods, the radial polynomials of Bessel-Fourier moments have more zeros and these zeros are more evenly distributed. It makes Bessel-Fourier moments more suitable for invariant texture recognition as a generalization of orthogonal complex moments. In the experiment part, we got three testing sets of 16, 24 and 54 texture images by way of translating, rotating and scaling them separately. The correct classification percentages (CCPs) are compared with that of orthogonal Fourier-Mellin moments and Zernike moments based methods in both noise-free and noisy condition. Experimental results validate the conclusion of theoretical derivation: BFM performs better in recognition capability and noise robustness in terms of RST texture recognition under both noise-free and noisy condition when compared with orthogonal Fourier-Mellin moments and Zernike moments based methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.