Abstract
Rotation of a gear powered by active particles is numerically investigated in a circular chamber. Due to the nonequilibrium properties of active particles, net gear rotation is achieved in a bath composed of self-propelling particles. Our setup can convert the random motion of active particles into the directional rotation of the ratchet gear. The direction of rotation is determined by the asymmetry of the gear and the persistence length (the ratio of the self-propulsion speed to the rotation diffusion coefficient) of active particles. Remarkably, the direction of rotation for large persistence length is opposite to the direction of rotation for small persistence length. Therefore, for a given asymmetric gear, we can observe the rotation reversal when tuning the system parameters (e.g., the self-propulsion speed, the rotation diffusion coefficient, and the packing fraction of active particles). Our findings are relevant to the experimental pursuit of rectifying random motion to directional motion in active matter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.