Abstract

We investigate the linear propagation of a paraxial optical beam in anisotropic media. We start from the eigenmode solution of the plane wave in the media, then subsequently derive the wave equation for the beam propagating along a general direction except the optic axes. The wave equation contains a second-order mixed derivative term originating from the anisotropy, and this term can result in the rotation of the beam-spot. The rotation effect is investigated by solving analytically the wave equation with an initial elliptical Gaussian beam for both uniaxial and biaxial media. For both media, it is found that there exists a specific direction, which is dependent on anisotropy of the media, on the cross-section perpendicular to propagation direction to determine the rotation of the beam-spot. When the major axes of the elliptical beam-spot of the input beam are parallel to the specific direction, the beam-spot will not rotate during propagation, otherwise, it will rotate with the direction and the velocity determined by input parameters of the beam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.