Abstract

Let $dx=\sum_{i=0}^{m}A_ix\circ dW^i$ be a linear SDE in $\mathbb{R}^d$, generating the flow $\Phi_t$ of linear isomorphisms. The multiplicative ergodic theorem asserts that every vector $v\in\mathbb{R}^d\backslash\{0\}$ possesses a Lyapunov exponent (exponential growth rate) $\lambda(v)$ under $\Phi_t$, which is a random variable taking its values from a finite list of canonical exponents $\lambda_i$ realized in the invariant Oseledets spaces $E_i$. We prove that, in the case of simple Lyapunov spectrum, every 2-plane $p$ in $\mathbb{R}^d$ possesses a rotation number $\rho(p)$ under $\Phi_t$ which is defined as the linear growth rate of the cumulative inffinitesimal rotations of a vector $v_t$ inside $\Phi_t(p)$. Again, $\rho(p)$ is a random variable taking its values from a finite list of canonical rotation numbers $\rho_{ij}$ realized in span $(E_i, E_j)$. We give rather explicit Furstenberg-Khasminski-type formulas for the $\rho_{i,j}$. This carries over results of Arnold and San Martin from random to stochastic differential equations, which is made possible by utilizing anticipative calculus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.